A MYRTENYLFUROHELIANGOLIDE FROM CALEA RUPICOLA

G. SCHMEDA-HIRSCHMANN, R. BOEKER*, J. JAKUPOVIC* and F. BOHLMANN*

Facultad de Ciencias Quimicas, Universidad Nacional de Asuncion, Paraguay; *Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany

(Received 29 October 1985)

Key Word Index—Calea rupicola; Compositae; sesquiterpene lactones; furoheliangolides; myrtenylfuroheliangolide.

Abstract—The aerial parts of Calea rupicola afforded in addition to known furoheliangolides two new ones, 9α -hydroxyatripliciolide-8-O-isobutyrate and a myrtenyl substituted sesquiterpene lactone 5β -myrtenyl- 4α ,5-dihydroatripliciolide-8-O-isovalerate.

Many species of the large genus Calea (Compositae, tribe Heliantheae, subtribe Neurolaeninae) have been studied chemically. Furoheliangolides and other highly oxygenated germacranolides are widespread [1]. However, from a few species other constituents were reported [2, 3]. This is in agreement with the placement of some of these species in other genera like Alloisospermum [4] and Tetrachyron [5]. We have studied a further species from Paraguay and the results are discussed in this paper.

The aerial parts of Calea rupicola Chod. gave thymohydroquinone dimethyl ether and its 8,9-dehydro derivative as well as the known atripliciolide derivatives 1 [6], 2 [7], 3 [6] and 5 [8]. Furthermore, two new ones were obtained, 9 α -hydroxyatripliciolide-8-O-isobutyrate (4) and a further myrtenyl substituted lactone (6). The structure of 4 followed from the ¹H NMR spectrum which was close to that of 3 [6]. However, the presence of a hydroxyl group at C-9 caused the replacement of a pair of double doublets (H-9) by a doublet at much lower field (δ 4.03). The stereochemistry followed from the value of $J_{8,9}$ and the downfield shift of H-7. Furthermore, the spectrum was close to that of the corresponding methacrylate [9].

The structure of 6 could be deduced from the ¹H NMR spectrum in combination with spin decoupling and NOE difference spectroscopy. The presence of a myrtenyl residue followed from the typical ¹H NMR signals which were close to those of similar atripliciolide derivatives with a myrtenyl residue at C-5 [10, 11]. Though the configurations at C-4 and C-5 were deduced from the couplings it was desirable to verify these proposals. NOE difference spectroscopy clearly established the stereochemistry at all chiral centres. Thus, clear effects were observed between H-15, H-6 (5%) and H-2 (10%), between H-14 and H-9α (3%), between H-7, H-8 (4%) and H-5 (7%), between H-5, H-7 (6%) and H-4 (6%) as well as between H-10', H-9' (6%) and H-7' (10%). Also the ¹³CNMR data agreed with the structure (see Experimental).

Furoheliangolides with a myrtenyl residue at C-5 so far have been isolated only from Calea species [10, 11]. The isolation of several furoheliangolides from C. rupicola

again showed that these lactones are characteristic for the genus. However, such compounds are also present in related genera.

EXPERIMENTAL

The aerial parts of Calea rupicola Chod. 1.68 kg voucher Schmeda 680) were extracted with EtOH-Et₂O (1:1) and the extract obtained was separated first by CC (silica gel) affording two fractions (Fr. 1: Et₂O-petrol, 1:10; Fr. 2: Et₂O and

1 3 R iVal i Bu MeBu i Bu MeBu R^{1} Н н Н OH Н R^2 Н Н Н Н OH

1754 Short Reports

Et₂O-MeOH, 9:1). TLC (silica gel, PF 254, Et₂O-petrol, 1:20) of fraction 1 gave 40 mg thymohydroquinonedimethyl ether and 20 mg of the 9,10-dehydro derivative. Fraction 2 was separated again by flash chromatography (silica gel, ϕ 30-60 μ , Et₂O-petrol, 1:1, Et₂O and Et₂O-MeOH, 9:1) affording 15 mg 1, 10 mg 2, 20 mg 3, 12 mg 4, 24 mg 5 and 12 mg 6 which was purified by HPLC (RP 8, MeOH-H₂O, 7:3, R, 7.5 min).

9 α -Hydroxyatripliciolide-8-O-isobutyrate (4). Colourless oil; IR $\gamma_{\rm col}^{\rm CO}$ cm⁻¹: 3600 (OH), 1770 (γ -lactone), 1740 (CO₂R), 1705 (C=CC=O); MS m/z (rel. int.): 362.136 [M]* (23) (calc. for C₁₉H₂₂O₇: 362.136), 347 [M-Me]* (7), 275 [M-OCOR]* (10), 274 [M-RCO₂H]* (9), 232 [275-C₃H₇]* (45), 71 [RCO]* (62), 57 (100); ¹H NMR (400 MHz, CDCl₃): δ 5.63 (s, H-2), 5.98 (dq, H-5), 5.30 (dq, H-6), 3.86 (ddd, H-7), 5.07 (dd, H-8), 4.03 (d, H-9), 6.36 (d, H-13), 5.75 (d, H-13'), 1.57 (s, H-14), 2.07 (t, H-15): 2.48 (qq), 1.09 and 1.12 (d, COCHMe₂); [J (Hz): 5,6 = 2.5; 5,15 = 6,15 = 7,8 = 2; 7,13 = 3; 7,13' = 2.5; 8,9 = 5; 2',3' = 2',4' = 7].

5β-M yrtenyl-4α,5-dihydroatripliciolide-8-O-isovalerate Colourless oil; IR v ccl cm -1: 1780 (y-lactone), 1730 (CO₂R), 1710 (C=CC=O), 1595 (C=COR); MS m/z (rel. int.): 496.283 $[M]^+$ (2.6) (calc. for $C_{30}H_{40}O_6$: 496.283), 481 $[M-Me]^+$ (0.5), $412 [M - O = C = CHC_3H_7]^+ (2.5), 394 [M - RCO_2H]^+ (1), 268$ (51), 232 (50), 135 (22), 125 (78), 85 [RCO] * (37), 57 [85 - CO] * (100); ¹H NMR (C_6D_6): δ 5.46 (d, H-2), 2.54 (dq, H-4), 2.81 (ddt, H-5), 4.64 (dd, H-6), 2.69 (ddd, H-7), 5.06 (dd, H-8), 2.66 (dd, H-9), 1.55 (dd, H-9'), 6.29 (d, H-13), 5.14 (d, H-13'), 1.17 (s, H-14), 0.86 (d, H-15), 2.03 (m, H-1'), 5.13 (br s, H-3'), 2.20 (ddd, H-4'), 2.03 (m, H-5'), 2.37 (dt, H-7 $_1$ '), 1.31 (d, H-7 $_2$ '), 2.28 (dd, H-8 $_1$ '), 2.00 (dd, H- 8_{2} ; [J (Hz): 2,4 = 1; 4,5 = 5,6 = 6,7 = 8,9 = 5; 4,15 = 7; $5,8_{1}$. $=5.8_{2}$: = 7; 7,13 = 3; 7,13' = 2.5; 8,9 = 5; 8,9' = 2; 9,9' = 15; $1',7_{1'} = 5',7_{1'} = 5.5;$ $4_{1'},4_{2'} = 8;$ $7_{1'},7_{2'} = 8.5;$ $8_{1'},8_{2'} = 15];$ ¹³C NMR (CDCl₃, C-1-C-15): δ205.6 s, 104.3 d, 193.3 s, 44.1 d, 36.9 d, 75.1 d, 45.5 d, 73.9 d, 42.6 t, 88.0 s, 168.9 s, 138.8 s, 123.8 t, 9.7 q, 20.9 q; C-1'-C-10': 52.9 d, 145.2 s, 118.4 d, 31.3 t, 40.8 d, 38.1 s, 31.6 t, 34.8 t, 26.2 q, 22.9 q; OCOR: 171.4 s, 43.2 t, 25.2 d, 22.3 q, 22.3 q (assignment based on comparison with the data of α -pinene, other isovalerates and related sesquiterpene lactones).

Acknowledgement—We thank Dr. R. M. King, Smithsonian Institution, Washington, DC 20560, U.S.A. for identification of the plant material.

REFERENCES

- del Castillo, J. B., Ferrero, M. T. M., Luis, F. R., Ubis, J. C. R. and Bueno, P. V. (1984) Rev. Latinoam. Quim. 15, 96.
- Castro, V., Jakupovic, J. and Bohlmann, F. (1984) J. Nat. Prod. 47, 802.
- Bohlmann, F., Borthakur, N., King, R. M. and Robinson, H. (1982) Phytochemistry 21, 1793.
- 4. Bohlmann, F. and Zdero, C. (1976) Phytochemistry 15 1177.
- Ohno, N., Mabry, T. J., Zabel, V. and Watson, W. H. (1979) *Phytochemistry* 18, 1687.
- Bohlmann, F., Mahanta, P. K., Natu, A. A., King, R. M. and Robinson, H. (1978) Phytochemistry 17, 471.
- 7. Bohlmann, F. and Dutta, L. N. (1979) Phytochemistry 18, 676
- Delgado, G., Romo de Vivar, A. and Herz, W. (1982) Phytochemistry 21, 1305.
- Bohlmann, F. and Jakupovic, J. (1979) Phytochemistry 18, 119.
- Bohlmann, F., Gupta, R. J., Jakupovic, J., King, R. M. and Robinson, H. (1982) Phytochemistry 21, 2899.
- Bohlmann, F., Fritz, U., King, R. M. and Robinson, H. (1981) Phytochemistry 20, 743.